طراحی مدل کاربرد آموزش مبتنی بر زمینه درس علوم تجربی ‏دوره ابتدایی بر مبنای نظریه داده بنیاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری برنامه ریزی درسی، دانشکده علوم انسانی، دانشگاه آزاد اراک، ایران

2 دانشیار برنامه ریزی درسی، دانشکده علوم انسانی، دانشگاه آزاد اراک، ایران

3 استادیار مدیریت و برنامه‌ریزی آموزشی، دانشکده علوم انسانی، دانشگاه آزاد اراک، ایران

چکیده

هدف از پژوهش حاضر ارائه مدل کاربرد آموزش مبتنی بر زمینه درس علوم تجربی ‏دوره ‏ابتدایی‏ است. این پژوهش با رویکرد کیفی و با روش داده بنیاد انجام گرفت. جامعه آماری تحقیق کلیه معلمان ابتدایی استان مرکزی بودند که 25 نفر از آنها از طریق روش نمونه ­گیری هدفمند (گلوله برفی) انتخاب شدند. داده ­ها از طریق مصاحبه نیمه ساختار یافته جمع ­آوری و به منظور تجزیه و تحلیل داده ­ها از روش کدگذاری باز، محوری و گزینشی استفاده شد. نتایج مطالعه حاضر نشان­ دهنده 243  کدباز، 52 کد فرعی و 15 کد اصلی بود. مقوله­ های فرعی که ذیل بعد شرایط علی قرار گرفتند عبارت بودند از: عوامل مربوط به دانش ­آموزان، عوامل مربوط به برنامه ­ریزی درسی و عوامل مربوط به معلمان. مقوله ­هایی که ذیل بعد عوامل زمینه ای قرار گرفتند عبارت بودند از: عوامل یادهی- یادگیری، عوامل سازمانی، فضا، منابع و مواد و مهارت معلمان. مقوله­ های که ذیل بعد شرایط میانجی قرار گرفتند عبارت بودند از: عوامل سازمانی و مدیریتی، فرهنگی، عوامل فردی معلمان و عوامل کالبدی. مقوله ­های که در بعد راهبردها قرار گرفتند عبارت بودند از: برنامه­ ریزی آموزشی شامل (امکانات فیزیکی، هدف، محتوا، آموزش معلمان، ارزشیابی و روش تدریس). پیامدها نیز عبارت بودند از: اثربخشی معلمان(رشد حرفه‌ای معلمان) و اثربخشی دانش آموزان (در حیطه مهارتی، در حیطه نگرشی، در حیطه شناختی و کسب مهارت‌های فرایندی علوم). بر اساس ‏نتیجه تحقیق حاضر آموزش مبتنی بر زمینه در درس علوم تجربی ‏دوره ‏ابتدایی متاثر از مجموعه ای از عوامل و مهارت­ ها ‏است که در صورتی که ‏این رویکرد به این مهارت ­ها مجهز نشوند، موفّق نخواهند شد. بنابراین یکپارچگی این ‏عوامل در ‏درس علوم تجربی ‏دوره ‏ابتدایی می­ توانند در تدوین و توسعه آموزش مبتنی بر زمینه در درس علوم تجربی ‏دوره ‏ابتدایی کمک کننده باشد.‏

کلیدواژه‌ها


Ahmadi, G. A. (2006). Extent of correspondence between the Intended, implemented, and acquired curricula in the new Primary schools Science program. Quarterly Journal of Education, 22(2), 51-92.
Aikenhead, G. S. (2006). Science education for everyday life, Canada, Teachers College Press.
Alghamdi, Rashed & Gillies, Robyn. (2013). the impact of cooperative learning in comparison to traditional learning (small groups) on EFL learners’ outcomes when Learning English as a Foreign Language, Asian Social Science, 9 (13), 19-27.
Aniashi, S. O., Okaba, L. A., Anake, E. U., & Akomaye, M. U. (2019). Classroom science with everyday life: A means for improving performance in sciences and national development in Nigeria. International Journal of Science and Technology Education Research, 10(3), 25-29.
Asadpour, S., Assareh, A., Ahmadi, G. A., Emamjome, S.M.R. (2022). A Comparative Study of Context-based Curriculum of Experimental Sciences in Junior Secondary School in Iran and Selected Countries. Iranian Journal of Comparative Education, 5(3), 2028-2044.
Atmodiwirjo, P. (2013). School ground as environmental learning resources: teachers' and pupils' perspectives on Its potentials, uses and accessibility. International Electronic Journal of Environmental Education, 3(2), 101-119.
Balkan-Kıyıcı, F. & Aydoğdu, M. (2011). Fen bilgisi öğretmen adaylarının günlük yaşamları ile bilimsel bilgilerini ilişkilendirebilme düzeylerinin belirlenmesi [Determining the level of associating science teacher candidates' daily life with their scientific knowledge.]. Necatibey Eğitim Fakültesi Dergisi, 5(1), 43-61.
Barrett, P. Davies, F. Zhang, Y. & Barrett, L. (2017). The holistic impact of classroom spaces on learning in specific subjects. Environment and Behavior, 49(4), 425-451.
Behnam Jam V, and Shah Hosseini, N. (2012). Improving the professional qualifications of teachers; It is necessary to participate in school-based curriculum planning, the first national conference of fundamental transformation in the curriculum system of Iran.
Bellocchi, A., King, D. T., & Ritchie, S. M. (2016). Context-based assessment: Creating opportunities for resonance between classroom fields and societal fields. International Journal of Science Education, 38(8), 1304-1342.
Bicaj, A &Treska, T. (2014). The effect of teacher professional development in raising the quality of teaching (pilot research), Academic Journal of Interdisciplinary Studies MCSER Publishing, Rome-Italy, 3(6), 369-377.
Blazer, C. (2012). The Impact of School Buildings on Learning. Information Capsule. Volume 1204. Research Services.
Borg, S. (2018). Evaluating the impact of professional development, RELC Journal, 10, 49(2), 195-216.
Brahuimoghadam, N., & Kahrazehi, M. (2020). A comparative study of teaching methods used for teaching science in the elementary schools in Iran and the United Kingdom, Journal of Teacher Professional Development, 5(2), 41-58,
Brazil, N., & Andersson, M. (2020). Mental Well-Being and Changes in Peer Ability from High School to College. Youth & Society, 52(5), 687-709.
Bukova-Güzel, E., Kula, S., Uğurel, I., & Özgür, Z. (2010). Sufficiency of undergraduate education in developing mathematical pedagogical content knowledge: Student teachers’ views. Procedia-Social and Behavioral Sciences, 2(2), 2222-2226
Cabbar, B. G., & Senel, H. (2020). Content Analysis of Biology Education Research That Used Context-Based Approaches: The Case of Turkey. Journal of Educational Issues, 6(1), 203-218.
Can, Ş. & Çelik, C. (2020). Pre-Service science teachers' universal science literacy levels across the statistical regional units. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 49, 112-133.
Çepni, S. (2012). Araştırma ve proje çalışmalarına giriş [Introduction to research and project work]. Ankara: PegemA Yayıncılık.
Çepni, S., Özmen, H., & Ayvacı, H. Ş. (2015). Yaşam (bağlam) temelli, beyin temelli öğrenme kuramları, 21. Yüzyıl becerileri ve FETEMM yaklaşımı ve fen bilimleri öğretimindeki uygulamaları [Life (context)-based, brain-based learning theories, 21st century skills and STEM approach and its applications in science teaching]. S. Çepni (Ed.), Kuramdan uygulamaya fen ve teknoloji öğretimi içinde, Ankara: Pegem Akademi
Chew, S. L., & Cerbin, W. J. (2021). The cognitive challenges of effective teaching. The Journal of Economic Education, 52(1), 17-40.
Cigdemoglu, C. (2020). Flipping the use of science-technology and society issues as triggering students' motivation and chemical literacy, Science Education International, 31(1), 74-83.
Cigdemoglu, C.; Gebanb, O.(2015). Improving students’ chemical literacy level on Thermochemical and thermodynamics concepts through context-based approach. Chem. Educ. Res. Pract, 16, 302–317.
Cobos, T. L., Castilla, R. L., & López, Á. B. (2017). Procesos de oxidación: UN acercamiento a su estudio en la ESO [Oxidation processes: An approach to its study at ESO]. Boletín ENCIC: Revista del Grupo de Investigación HUM-974, 1(1), 7-8.
Collie, R. J., Martin, A. J., Papworth, B., & Ginns, P. (2016). Students' interpersonal relationships, personal best (PB) goals, and academic engagement, Learning and Individual Differences, 45(1), 65–76.
De Jong, O. (2008). Context-based chemical education: how to improve it?. Chemical Education International, 8(1), 1-7.
De Putter-Smits, L. G. A. (2012). Science teachers designing context-based curriculum materials: developing context-based teaching competence. PhD Dissertation, Eindhoven: Eindhoven University of Technology.
De Putter-Smits, L. G., Nieveen, N. M., Taconis, R., & Jochems, W. (2020). A one-year teacher professional development programme towards context-based science education using a concerns-based approach. Professional development in education, 1-17.
Demir, İ. (2019). Yaşam temelli öğretimin ortaokul 7.sınıf öğrencilerinin ağız ve diş hijyeni konusunda kavram öğrenmelerine, fen bilimlerine karşı tutumlarına ve motivasyonlarına etkisi [The effect of life-based teaching on secondary school 7th grade students' learning concepts about oral and dental hygiene, their attitudes and motivations towards science.] [Yayınlanmamış Yüksek lisans tezi]. Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, İstanbul.
Dewi, I. N., Poedjiastoeti, S., & Prahani, B. K. (2017). Elsii learning model based local wisdom to improve students’ problem solving skills and scientific communication. International Journal of Education and Research, 5(1), 107-118
Dori, Y. J., Avargil, S., Kohen, Z., & Saar, L. (2018). Context-based learning and metacognitive prompts for enhancing scientific text comprehension, International Journal of Science Education, 40(10), 1198-1220.
Earthman, G. I. (2004). Prioritization of 31 criteria for school building adequacy. Baltimore, MD: American Civil Liberties Union Foundation of Maryland.
Esra, O. Z. A. Y., & Tosun, F. C. (2011). Effect of context based learning in students’ achievement about nervous system. Journal of Turkish Science Education, 8(2), 91-106.
Fiona, K. (2013). Evaluating the impact of teacher professional development: An evidence-based framework. Professional Development in Education, 40 (1), 89-111.
Flynn, S. (2019). Science literacy – science education for everyday life, Journal of The Chartered College of Teaching. https://impact.chartered.college/article/science-literacy-science-education-everyday-life
Fung, Dennis Chun-Lok & Liang, Tim Weijun. (2019). Fostering critical thinking through collaborative group work: insights from Hong Kong, Springer.
Furner, Joseph .M. and Worrell, Nancy L. (2017). The importance of using manipulatives in teaching math today, transformations: 3) 1):45-57.
Genç, M., Ulugöl, S., & Ünsal, S. (2017). Ortaokul öğrencilerinin yaşam temelli öğrenme hakkındaki görüşleri [Secondary school students' views on life-based learning]. Researcher: Social Science Studies, 5(9), 244-255.
Ghaempanah, M. (2014). Investigating factors affecting life in secondary education spaces (Master's thesis). Shahid Rajaei University of Education, Tehran.
Ghaith, G. M. (2018). Teacher perceptions of the challenges of implementing concrete and conceptual cooperative learning. Issues in Educational Research, 28 (2), 385-4
Ghobadi, L, Piri, M. (2013). The difference in academic performance in active learning profiles and motivational beliefs of students, Journal of Learning and Learning Studies, 6(1), pp. 112-95.
Gilbert, J.K. (2006). On the nature of ‘context’ in chemical education. International Journal of Science Education, 28(9), 957-976.
Gillies, R. M , Ashman, A. F & Terwel J (2008).The teacher's role in implementing cooperative learning in the classroom: New York , Springer Science Business Media. LLC. Hancok, D. (2004). Cooperative learning and peer orientation effects on motivation and achievement. The Journal of educational research. Bloomington. 97(3):159-167.
Gillies, R. M. (2014). Cooperative learning: Developments in research. International Journal of Educational Psychology, 3 (2), 125-140.
Gillies, R. M. (2016). Cooperative learning: a Review of research and practice. Australian Journal of Teacher Education, 41 (3), 39-51.
Gislason, N. (2010). Architectural design and the learning environment: A framework for school design research. Learning Environments Research, 13(2), 127-145.
Gorea, J; Lloyda, A; Smitha, M; Bowea, J; Ellisa, H & Lubans, D. (2017). Effects of professional Development on the quality of teaching: Resultsfrom a randomised controlled trial of quality teaching rounds, Teaching and Teacher Education, 68, 99-113.
Gül Ş. & Konu M. (2018). Yaşam temelli probleme dayalı öğretim uygulamalarının öğrenci başarısına etkisi [The effect of life-based problem-based teaching practices on student achievement]. Yaşadıkça Eğitim, 32(1), 45-68.
Halász, G., & Michel, A. (2011). Key Competences in Europe: interpretation, policy formulation and implementation. European Journal of Education, 46(3), 289-306.
Halil, C. Ç.(2018). The Effects of Activity Based Learning on Sixth Grade Students’ Achievement and Attitudes towards Mathematics Activities, EURASIA Journal of Mathematics, Science and Technology Education, 14 (5): 1963- 1977.
Herrera, N., Gloria, A. M., & Castellanos, J. (2019). The role of perceived educational environment and high school generation on Mexican American Female community college students’ emic well-being. Journal of Diversity in Higher Education, 11(3), 254-267
Hewitt, Thomas, W. (2006), Understanding and Shaping Curriculum, Sage press, Inc
Hubackova, S. (2015). Factors Influencing the Quality of Teaching and the Foreign Language Knowledge. Procedia-Social and Behavioral Sciences, 197, 1952-
1956.
Ilhan, N., Yildirim, A., & Yilmaz, S. S. (2016). The effect of context-based chemical equilibrium on grade 11 students' learning, motivation and constructivist learning environment. International Journal of Environmental & Science Education, 11(9), 3117-3137.
Islamian Kopai, M. (2015). Designing a garden-school with an approach to the role of nature in the education of teenagers (Master's thesis). Kashan National University, Kashan
Jacobs, George M & Renandya, Willy A. (2019). Student centred cooperative learning: linking concepts in education to promote student learning, Springer
Jafari, H. R., Mirshah, J. S., & Liaghatdar, M. J. (2009). A Comparative Study of Evolutionary Transformation of the Curriculum in Educational Sciences, Journal of New Thoughts on Education, 5(2), 145-193
John, M., Molepo, J. M., & Chirwa, M. (2018). Secondary school learners’ contextual'zed knowledge about reflection and refraction: a case study from South Africa. Research in Science & Technological Education, 36(2), 131-146.
Kabiri, M; Ghazi Tabatabai, M. & Bazargan, A. (2016). Determining the basic competencies expected from students of Grade 8 in experimental sciences and comparing them with emphases of the Iran science curriculum. Quarterly Journal of Iranian Curriculum Studies, 11 (44), 109-140.
Karimi, A; Kabiri, M. (2013). Comparison of the performance of the top and weaker countries of the 2007 TIMSS in terms of the use of teaching methods in science classes, Curriculum Studies Quarterly, 106, 31-91.
Karslı-Baydere, F. & Kurtoğlu, S. (2020). 5. Sınıf öğrencilerinin biyolojik çeşitlilik konusundaki kavramsal anlamalarına REACT stratejisinin etkisi [The effect of REACT strategy on 5th grade students' conceptual understanding of biodiversity]. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 1015-1041.
Kazemi, M. & Nazari, L. (2015). Studying the effect of schools environment architecture on student’s identity formation in Iran high schools. International Journal of Architecture and Urban Development, 5(3), 43-52.
Kereluik, K., Mishra, P., Fahnoe, C., & Terry, L. (2013). What knowledge is of most worth: Teacher knowledge for 21st century learning? Journal of Digital Learning in Teacher Education, 29(4), 127-140.
Khalundi, R. (2018). A stepping stone for progress - designing children's learning space with the aim of promoting creativity by looking at Iranian architectural patterns (Master's thesis). Kurdistan National University, Kurdistan.
King, D. (2012). New perspectives on context-based chemistry education: Using a dialectical sociocultural approach to view teaching and learning. Studies in Science Education, 48(1), 51-87.
King, D. T., Winner, E. & Ginns, I. (2011). Outcomes and ımplications of one teacher’s approach to context-based science in the middle years. Teaching Science, 57 (2), 26–30.
King, D., & Henderson, S. (2018). Context-based learning in the middle years: achieving resonance between the real-world field and environmental science concepts. International Journal of Science Education, 40(10), 1221-1238.
Kobiah, L. K., Barchok, H. K. & Wanja Njagi, M. (2015). Teacher’s participation in curriculum conceptualization and effective implementation of secondary school curriculum in Kenya. International Journal of Education and Research, 3(7), 283-294.
Kortland, J. (2005). Physics in personal, social and scientific contexts. A retrospective view on the Dutch Physics Curriculum Development Project PLON. In P. Nentwig, & D. Waddington (Eds.), Making it relevant: Context-based learning of science (pp. 67-89). Munchen, Germany: Waxmann.
Kumar, R. O'Malley, P. M. & Johnston, L. D. (2008). Association between physical environment of secondary schools and student problem behavior: A national study, 2000-2003. Environment and Behavior, 40(4), 455-486.
Kutu, H. & Sözbilir, M. (2011). Yaşam temelli ARCS öğretim modeliyle 9. sınıf kimya dersi" Hayatımızda Kimya" ünitesinin öğretimi. Ondokuz Mayis University Journal of Education, 30(1), 29-62.
Lagerstrom, M. L., Piqueras, J., & Palm, O. (2021). Should we be afraid of Ebola?: A study of students' learning progressions in context-based science teaching, Nordic Studies in Science Education, 17(1), 64-78.
Malekian, F. (2018). Description and analysis of educational space design criteria from the point of view of educational technology experts based on creative thinking. Journal of research in educational systems, 12 (special issue), 731-748.
MEB. (2020). İlköğretim kurumları (İlkokullar ve ortaokullar) fen bilimleri dersi öğretim programı [Primary education institutions (Primary and secondary schools) science course curriculum] (3., 4., 5., 6., 7. ve 8. sınıflar). Ankara.
Meristo, M., & Eisenschmidt, E. (2016). Novice teachers’ perceptions of school climate and self-efficacy. International Journal of Educational Research, 67, 1–10.
Millis, B. J. (2010). Cooperative learning in higher education. Published in Association with The National Teaching and Learning Forum
Mokua, B. (2010). An evaluation of the curriculum development role of teachers as key agents in curriculum change. M. Ed Thesis. South Africa., North-West University.
Nagasu, N., & Kumano, Y. (1996). STS initiatives in Japan: Poised for a forward leap. In Yager, Robert Eugene, (Ed) Science, technology, society as reform in science education, 261-270, State University of New York Press
O'Connor, Catherine, Michaels, Sarah., Chapin, Suzanne., & Harbaugh, Allen G. (2017). The silent and the vocal: participation and learning in whole-class discussion, learning and Instruction, 48, 5-13.
Oduor R (2013). Can Science Solve all the Problems in the World? (For World Science Day for peace and development).
Oliva, Peter, F. (2010). Developing curriculum, Pearson Education, Inc.
Overton, T. L. & Potter, N. M. (2011). Invesigating students' success in solving and attitudes towards context-rich open-ended problems in chemistry. Chemistry Education Research and Practice, 12, 294–302.
Özay-Köse, E. & Çam Tosun, F. (2011). Yaşam temelli öğrenmenin sinir sistemi konusunda öğrenci başarılarına etkileri [The effects of life-based learning on student achievement in the nervous system]. Türk Fen Eğitimi Dergisi, 8(2), 91-106.
Pakrovan, E (2017). Teaching some mathematical concepts of the seventh grade of the first secondary school with the help of hand-made constructions and comparing it with the traditional method.
Panek, H. S. (2012). Context based science instruction. Education and human development. (Master's Theses). State university of New York, New York.
Park, J., & Lee, L. (2004). Analyzing cognitive or non‐cognitive factors involved in the process of physics problem‐solving in an everyday context. International Journal of Science Education, 26(13), 1577-1595.
Pepper, D. (2011). Assessing Key Competen ces across the Curriculum and Europe. European Journal of Education, 46 (3), 335-353.
Perkins, G. (2011). Impact of STS: Context-based type of teaching) in comparison with a textbook approach on attitudes and achievement in community college chemistry classrooms, AZ: Arizona State University.
Piedrahíta, M. S. (2018). Changing teaching practices: the impact of a professional development program on an English language teacher, IKALA, 23(1), 101- 120.
Pinar, W.F., Reynolds, W. M., Siattery, P. & Taubman, P. M. (1996). Understanding curriculum, Peter Lang Publishing, Inc. New York.
Pinar, William, F. & Zhang, Hua (2015).Without experience is teacher development possible? Utobiography and teacher development in China: Subjectivity and Culture in Curriculum Reform.Palgrave Macmillan US.
Podschuweit, S. & Bernholt, S. (2018). Composition-effects of context-based learning opportunities on students’ understanding of energy. Research in Science Education, 48(4), 717-752.
Redecker, C. (2012). A Review of Evidence on the Use of ICT for the Assessment of Key Competences. Luxembourg (in press): Institute for Prospective Technological Studies (IPTS).Voorhees, R. A. (2001). Competency – based learning models, a necessary future. 5-13
Rezaei, M. (2018). Professional competencies of teachers: past, present, future, Education Quarterly, 138(1), 129-150.
Richardson, Carmen; Mishra, Punya, (2018). Learning environments that support student creativity: Developing the SCALE, Thinking Skills and Creativity, 27, 45-54
Rosa, F. O., Mundilarto, Wilujeng, I. & Sulistyani, A. M. (2019). Science in everyday life To build science literacy. Internatıonal Journal of Scıentıfıc & Technology Research, 8, 12, 1148-1151.
Sevian, H., Dori Y. J. & Parchmann, I. (2018). How does STEM context-based learning work: what we know and what we still do not know. International Journal of Science Education, 40, 10, 1095-1107.
Silander, P. (2015). Rubric for Phenomenon based learning. http://www.phenomenaleducation.info/phenomenon-based-learning.html.
Stolk, M. J., Bulte, A. M. W., De Jong, O. & Pilot, A. (2009). Towards a framework for a Professional development programme: empowering teachers for context-based chemistry education. Chemistry Education Research and Practice, 10, 164–175.
Sugiono, L. R. & Purwastuti, A. (2017). Local wisdom-based character education model in elementary scgool in Bantul Yogyakarta Indonesia. Sino-US English Teaching Vol.14, No. 5, 299-308.
Swirski, H., Baram-Tsabari, A., & Yarden, A. (2018). Does interest have an expiration date: An analysis of students’ questions as resources for context-based learning? International Journal of Science Education, 40(10), 1136-1153.
Tal, T. & Dierking L. D. (2014). Learning science in everyday Life. Journal of Research in Science Teaching, 51, 3, 251-259.
Tayem YI, James H, Al-Khaja KA, Razzak RL, Potu BK, Sequeira RP. Medical students' perceptions of peer assessment in a problem-based learning curriculum. Sultan Qaboos University Medical Journal. 2015; 15(3): 376-381.
Tekbiyik, A., & Akdeniz, A. R. (2010). An investigation on the comparison of context based and traditional physics problems, Electronic Journal of Science and Mathematics Education, 4(1), 123-140.
Textbooks Authoring & Planning Office, (2015). Teacher's book, Experimental sciences, seventh grade, first year of high school, Tehran: General Office of Textbook Printing and Distribution.
Tulum G. (2019). Fen bilimleri dersi ışık konusuna yönelik geliştirilen bağlam temelli materyalin akademik başarı üzerine etkisi [The effect of the context-based material developed for the subject of light in science course on academic achievement]. [Yayınlanmamış Yüksek lisans tezi]. Ondokuz Mayıs Üniversitesi, Eğitim Bilimleri Enstitüsü, Samsun.
Van Dijk, E. M., & Kattmann, U. (2007). A research model for the study of science teachers’ PCK and improving teacher education. Teaching and Teacher Education, 23(6), 885-897.
Van Ryzin, M. J., & Roseth, C. J. (2018). Cooperative learning in middle school: A means to improve peer relations and reduce victimization, bullying, and related outcomes. Journal of Educational Psychology, 110 (8), 1192-1201.
Walan, S., Mc Ewen, B., & Gericke, N. (2016). Enhancing primary science: An exploration of teachers’ own ideas of solutions to challenges in inquiry-and context-based teaching. Education, 3-13, 44(1), 81-92.
Walker, Decker F. (2003). Fundamentals of curriculum: Passion and professionalism, Lawrence Erlbaum Associates, Inc., 2nd ed.
Wentzel, K. R., Muenks, K., McNeish, D., & Russell, S. (2017). Peer and teacher supports in relation to motivation and effort: A multi-level study, Contemporary Educational Psychology, 49(2), 32–45.
Wiliam, D. (2009). What kinds of assessment support learning of key competences? Paper presented at the Directorate-General of Education and Culture, Brussels
Wiyarsi, A., Pratomo, H., & Priyambodo, E. (2020). Vocational high school students’ chemical literacy on context-based learning: a case of petroleum topic. Journal of Turkish Science Education, 17(1), 147-161.
Yıldırım, H. İ. & Dağıstanlı, F. (2020). Yaşam temelli öğrenme yaklaşımı ile destekli çevre eğitiminin ortaokul 7. sınıf öğrencilerinin çevreye yönelik tutum, davranış ve başarı düzeylerine etkisi [The effect of environmental education supported by life-based learning approach on the attitudes, behaviors and achievement levels of secondary school 7th grade students.]. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, (54), 106-132.
Yıldırım, N., Küçük, M. & Ayas, A. (2013). A comparison of effectiveness of analogy-based and laboratory-based instructions on students' achievement in chemical equilibrium. Scholarly Journal of Education, 2(6), 63-76.
Zhang N, Henderson CN. (2015).Can formative quizzes predict or improve summative exam performance? Journal of Chiropractic Education: 29(1):16-21.