شناسایی مدلی برای فعالیت‌های خلاقانه دانشجویان ریاضی: یک تحقیق کیفی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه ریاضی دانشگاه تربیت دبیر شهید رجایی

چکیده

هدف این پژوهش بررسی تجربة فعالیت­های­‌ خلاقانه دانشجویان کارشناسی ریاضی و شناسایی مدلی برای شناخت بهتر این فعالیت­ها است. داده­ها با استفاده از رویکرد کیفی به روش گراندد تئوری (نظریه ‌مبنایی یا نظریه ‌داده‌بنیاد) و ابزار مصاحبه‌های عمیق نیمه‌ساختار یافته جمع­آوری شده­اند. جامعة آماری، دانشجویانی می‌باشند که مشغول تحصیل رشته ریاضی در دانشگاه‌های دولتی واقع در شهر تهران هستند. سیزده دانشجوی ریاضی با روش نمونه‌گیری هدفمند و نظری به‌طور داوطلبانه دعوت به همکاری شدند. داده­ها از طریق فرآیند کدگذاری در دو مرحله آزاد و محوری تحلیل شد. برای کسب اطمینان از کیفیت پژوهش از معیارهای باورپذیری، اطمینان­پذیری، انتقال­پذیری و تأییدپذیری استفاده شد. مدل مفهومی استخراج شده از دل داده‌ها در قالب الگوی پارادایمی نظام­مند روش گراندد تئوری شامل پدیده، شرایط‌ علّی، استراتژی­ها، عوامل مداخله‌گر، شرایط زمینه‌ای، زمینه و پیامدها می‌باشد و مدل حاکی از آن است که عوامل متعددی بر پدیدة خلاقیت ‌ریاضی تأثیرگذارند.

کلیدواژه‌ها


Arikan, E. E. (2017). Is There a Relationship between Creativity and Mathematical Creativity? Journal of Education and Learning, 6(4), 239.
Ajzen, I. (1991), The theory of planned behavior. Organizational behavior and human decision processes, Vol.50, pp.179-211.
Ajzen, I., & Klobas, J. (2013) Fertility intentions: An approach based on the theory of planned behavior. Demographic Research.
Bahar, A. K. & Maker, C.J. (2011).Exploring the relationship between mathematical creativity and mathematical achievement. Asia-Pacific Journal of Gifted and Talented Education, 3(1), 33-48.
Bakar, M. N. & Norman, I. (2012).The Role of Metacognitive Abilities in Posing Mathematical Problems. Journal of Science and Mathematics Education, 5, 1-10.
Burton, L. (1999). The practices of mathematicians: What do they tell us about coming to know mathematics? Educational Studies in Mathematics, 37(2), 121-143.
Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as tool to develop and identify creativity gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37–47.
Creswell, J.W. (1998). Qualitative inquiry and research design: Choosing among five raditions. Thousand Oaks, CA: Sage.
Ellwood, S., Pallier, G.,Snyder, A., Gallate,J, (2009). The Incubation Effect: Hatching a Solution? Creativity Research Journal, 21(1), 6–14.
Ervynck, G. (1991). Mathematical creativity. In D. Tall, Advanced mathematical thinking (pp. 42-52). Kluwer Academic Publishers New York.
Haylock, D.W. (1987): A framework for assessing mathematical creativity in school children. – In: Educational Studies in Mathematics. 18 (1), 59–74.
Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., Christou, C., & Cleanthous, E. (2012). Predicting Mathematical Creativity.
Kim, K. H. (2009). Creative Problem Solving. In B. Kerr (Ed). Encyclopedia of Giftedness, Creativity and Talent. Sage Publications. . pp. 188-191.
Kiymaz, Y., Sriraman, B., & Lee, K. H. (2012).Prospective Secondary Mathematics Teachers’ Mathematical Creativity in Problem Solving. The Elements of Creativity and Giftedness in Mathematics, 173-191.
Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2011). Indicators of creativity in mathematical problem posing: How indicative are they?. In Proceedings of the 6th international conference on creativity in mathematics education and the education of the gifted students University of Latvia, Riga, Latvia/Angel Kanchev University of Ruse, Ruse, Bulgaria (pp. 120-125).
Kwon, O. N., Park, J. H., & Park, J. S. (2006).Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. Working Group 14. Advanced mathematical thinking 2220- 2330.
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students. (Ch. 9, pp. 129-145). Rotterdam, the Netherlands: Sense Publisher.
Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: what makes the difference?. ZDM, 1-15.
Leikin, R., & Lev, M. (2007, July). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In PME CONFERENCE (Vol. 31, No. 3, p. 3).
Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For The Learning of Mathematics, 26(1), 17-19.
Lincoln, Y.S., & Guba, E.G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
Leung, S. K. S. (1997). On the role of creative thinking in problem posing.ZDM, 29(3), 81-85.
Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal, 21(4), 338-348.
Mina, F.(2008). Promoting Creativiy for all students in mathematics educations. Proceedings of the discussing group 9: Promoting Creativity for all students in mathe- maticseducation. In the 11th ICME (Monterrey, Mexico, 2008).
Neumann, C. J. (2007). Fostering creativity—A model for developing a culture of collective creativity in science. EMBO Reports, 8(3), 202–206.
Parker, J. P., & Begnaud, L. G. (2004). Developing creative leadership. Libraries Unlimited.
Schoenfeld, A. H. (1985). Mathematical problem solving. School of education, Department of mathematics, University of Colifornia, Brekly, Colifornia. ACADEMIC PRESS. INC.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). New York: MacMillan.
Sharma, Y. (2014). The Effects of Strategy and Mathematics Anxiety on Mathematical Creativity of School Students. Mathematics Education, 9(1), 25-37.
Silver, E.A. (1997). Fostering Creativity through Instruction Rich in Mathematical Problem Solving and Problem Posing. Zentralblatt für Didaktik der Mathematik 29 (3), 75–80.
Sinitsky, I.(2008). Both for teachers and for Students: on some essential features of creativity- stimulating activities. Proceedings of the 11th International Congress on Mathematical Education Monterrey, Mexico.
Sriraman, B., & Haavold, P. (2017). Creativity and giftedness in mathematics education: A pragmatic view. First compendium for research in mathematics education. Reston: National Council of Teachers of Mathematics.
Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. ZDM, 1-11.
Sriraman, B. (2009). The characteristics of mathematical creativity. The International Journal on Mathematics Education [ZDM], 41, 13-27.
Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Education, 17, 20–36.
Strauss A. & Corbin J. (1998). Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 2nded. Sage Publications, Thousand Oaks, CA, USA.
Tall, D. (1991) (Ed). Advanced mathematical thinking (pp. 3-21).Kluwer Academic Publishers New York.
Walker, C. (2008). Factors Relating to the Success or Failure of College Algebra Internet Students: A Grounded Theory Study. ProQuest.
Wessels, H. M. (2014). Levels of mathematical creativity in model-eliciting activities. Journal of Mathematical Modelling and Application, 1(9), 22-40.
Wong, K. Y. (1999). Use of student mathematics questioning to promote active learning and Metacognition. Proceedings of the 12th International Congress on Mathematical Education, Seoul, Korea.
Yuan, X., & Sriraman, B. (2012). An exploratory study of relationships between students’ creativity and mathematical problem-posing abilities. The elements of creativity and giftedness in mathematics, 5-28