Comparative evaluation of the level of geometric reasoning of ninth grade girls and boys based on the Van Hiele theory

Document Type : Research Paper

Authors

1 Assistant Professor

2 Master of Mathematics Education & Math Teacher in Babol

Abstract

The purpose of the present study was to study the level of learning of geometric reasoning in 9th grade students based on Van Hiele -theory in one of the topics of geometry, namely the topic of reasoning and proof in geometry and their properties. This study was conducted by survey method. The statistical population consisted of all 9th grade students of Babol public schools and the sample consisted of 470 people who were selected by random cluster sampling method. The measuring tool was a researcher-made test with 10 questions. The face and content validity of the test was confirmed by a number of mathematics and mathematics education professors as well as by some experienced junior school teachers. Descriptive and inferential statistics (T-test) were used for data analysis. The findings indicate that the dominant level of geometric thinking of the ninth grade students in the field of reasoning is at the first level. Also, boys performed better than girls in first level of Van Hiele. The results of t-test showed that this difference was statistically significant. The findings of this study can be used in reviewing the geometry education process by mathematics teachers, educational policy makers, and textbook authors.

Keywords


الف. فارسی
عالمیان، وحید؛ سیدی، محمد و حبیبی، ملوک. (1397). شناسایی بدفهمی­های دانش­آموزان پایة هشتم در مهارت­های هندسی در هندسه و استفاده از نظریة فن‌هیلی برای ارتقاء و بهبود سطح مهارت‌های هندسی دانش­آموزان.  نوآوری های آموزشی . دوره ۱۷, شماره ۳، 147- 123.
امینی‎فر، الهه؛ صالح صدق‏پور، بهرام و باقری، نیره. (1390). ساخت آزمون معتبر و پایای تفکرهندسی بر اساس سه سطح اول نظریه ون هیلی.‎ فصلنامه اندازه‏گیری تربیتی. سال اول، شماره 4 ، 125- 111.
 حبیبی، ملوک. (1392). نقش روش تدریس فعال معلمان در هندسه (با مدل فن‌هیلی) در افزایش انگیزش و یادگیری دانش‏آموزان دوره ابتدایی. فصلنامه‏ مشاوره شغلی و سازمانی، دوره‏ پنجم، شماره 14، 105- 84.
ریحانی، ابراهیم؛ امام جمعه، سید محمدرضا؛ صالح صدق‏پور، بهرام و مرادی ویس، اصغر. (1389). ارزیابی دانش معلمان و دانشجویان ریاضی در درس هندسه با استفاده از نظریۀ فن­هیلی. نشریه علمی پژوهشی فناوری آموزش. دوره پنجم، شماره 2، 165- 153.
گویا، زهرا و همکاران. (1387). کتاب هندسه 1 سال دوم آموزش متوسطه. چاپ چهاردهم. دفتر برنامه‌ریزی و تألیف کتاب­های درسی. وزارت آموزش و پرورش.
 لیاقتدار، محمدجواد؛ سلیمانی، نسیم و صدر ارحامی، سعید. (1391). بررسی تأثیر روش آموزش هندسه بر مبنای نظریۀ‏ ون‏هیلی بر پیشرفت تحصیلی.‎ اندیشه‏های نوین تربیتی، دوره 8، شماره‏ 3، 126- 107.
مرادی‌ویس، اصغر. (1388). مطالعۀ جایگاه هندسه مدرسه‏ای در برنامه درسی کارشناسی دبیری ریاضی مبتنی بر نظریۀ فن‌هیلی.پایان‏نامه کارشناسی ارشد آموزش ریاضی، دانشگاه تربیت دبیر شهید رجایی، تهران.
ب. انگلیسی
Al-ebous, T. (2016). Effect of the Van Hiele Model in Geometric Concepts Acquisition: The Attitudes towards Geometry and Learning Transfer Effect of the First Three Grades Students in Jordan. International Education Studies, 9(4), 87-98.
Alex, J. K. & Mammen, K. J. (2016). Geometrical Sense Making: Findings of Analysis Based on the Characteristics of the van Hiele Theory among a Sample of South African Grade 10 Learners. Eurasia journal of mathematics, Scieence & Technology Education , 12(2) assessment policy statement (CAPS) expectation. International Journal of Educational Sciences, 7(1), 29-39.
Armah, R. B. & Kissi, P. S. (2019). Use of the van Hiele Theory in Investigating Teaching Strategies used by College of Education Geometry Tutors. EURASIA Journal of Mathematics, Science and Technology Education15(4), 1-13.
Armah, R. B., Cofie, P. O. & Okpoti, C. A. (2018). Investigating the Effect of van Hiele Phase-Based Instruction on Pre-Service Teachers' Geometric Thinking. International Journal of Research in Education and Science, 4(1), 314-330.
Burger, W. F. & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for research in mathematics education, 17, 31-48.
Chua, G. L. L., Tengah, K. A., Shahrill, M., Tan, A. & Leong, E. (2017). Analysing students’perspectives on geometry 3rd International Conference on Education (Vol. 3, Pp. 205-213).
Clements, D. H. (2003). Teaching and Learning Geometry. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), Research Companion to Principles and Standards for School Mathematics (pp. 151-178). Reston, VA: NCTM.
Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. Learning and teaching geometry, K-12, 1-16.
Colignatus, T. (2014). Pierre van Hiele and David Tall: Getting the facts right. ArXive-prints, 1408.
Erdogan, F. (2020). Prospective Middle School Mathematics Teachers’ Problem Posing Abilities in Context of Van Hiele Levels of Geometric Thinking. International Online Journal of Educational Sciences, 12(2), 132-152.
Ersoy, M., İlhan, O. A. & Sevgi, S. (2019). Analysis of the Relationship between Quadrilaterals Achievement Levels and Van Hiele Geometric Thinking Levels of the Seventh Grade Students. Higher Education Studies9(3), 1-11.
Fuys, D., Geddes, D. & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, i-196.
Gutiérrez, A. & Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning in Mathematics, 20, 27-46.
Halat, E. (2008). In-service middle and high school mathematics teachers: Geometric reasoning stages and gender. The Mathematics Educator, 18(1), 8-14.
 Knight, K. C. (2006). An investigation into the change in the Van Hiele levels of understanding geometry of pre-service elementary and secondary mathematics teachers (Doctoral dissertation, The University of Maine).
Mayberry, J. (1983). The van Hiele levels of geometric thought in undergraduate preservice teachers. Journal for Research in Mathematics Education, Education, 14, 58-69.
Maharani, A., Sulaiman, H., Aminah, N. & Rosita, C. D. (2019, March). Analyzing the student’s cognitive abilities through the thinking levels of geometry van hiele reviewed from gender perspective. In Journal of Physics: Conference Series (Vol. 1188, No. 1, p. 012066). IOP Publishing.
Mason, M. (2009). The van Hiele levels of geometric understanding. Colección Digital Eudoxus, 1(2).
Mullis, I. V., Martin, M. O., Foy, P. & Arora, A. (2012). TIMSS 2011 international results in mathematics. International Association for the Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, the Netherlands.
National council of Teacher of Mathematics. (2000). Principle and Students for School Mathematics. Reston VA:  Author.
Nisawa, Y. (2018). Applying van Hiele’s Levels to Basic Research on the Difficulty Factors behind Understanding Functions. IEJME-Mathematics Education. 13(2), 61-65.
ÖZKAN, E. & Diler, Ö. N. E. R. (2019). Investigation of the Development of van Hiele Levels of Geometric Thinking in a Computer Supported Collaborative Learning (CSCL) Environment. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 15(2), 473-490.
Prayito, M., Suryadi, D. & Mulyana, E. (2019, March). Geometric thinking level of the Indonesian seventh grade students of junior high school. In Journal of Physics: Conference Series (Vol. 1188, No. 1, p. 012036). IOP Publishing.
Pusey, E. L. (2003). The van Hiele model reasoning in geometry: a literature review. Unpublished master’s thesis, North Carolina State University, Raleigh, NC, United States.
Sánchez-García, A. B. & Cabello, A. B. (2016). An instrument for measuring performance in geometry based on the van Hiele model. Educational Research and Reviews, 11(13), 1194-1201.
Shoenfeld, A. (1985). Mathematics Problem Solving. Academic Press.
Sulistiowati, D. L., Herman, T. & Jupri, A. (2019, February). Student difficulties in solving geometry problem based on Van Hiele thinking level. In Journal of Physics: Conference Series (Vol. 1157, No. 4, p. 042118). IOP Publishing.
Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry. CDASSG Project.
Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando: Academic Press.
Van Hiele, P. M. (1959). The child’s thought and geometry. In D. Fuys, D. Geddes, & R. Tischler (Eds.), English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele (pp. 243–252). Brooklyn, NY: Brooklyn College, School of Education.
Vojkůvková, Iva. (2012). “The van Hiele Model of Geometric Thinking.” WDS'12 Proceedings of Contributed Papers: Part I - Mathematics and Computer Sciences (eds. J. Safrankova and J. Pavlu), Prague, Matfyzpress, 72-75.
Yunus, M., Suraya, A., Ayub, M. & Fauzi, A. (2019). Geometric Thinking of Malaysian Elementary School Students. International Journal of Instruction12(1), 1095-1112.